Python Pandas Hands-on Solutions | TCS Fresco Play
Course Path: Data Science/DATA SCIENTIST'S TOOLBOX/Python Pandas
All Question of the Quiz Present Below for Ease Use Ctrl + F to find the Question.
Suggestion: If you didn't find the question, Search by options to get a more accurate result.
1.Welcome to Python Pandas | 1 | Data Structures in Pandas(60 Min)
Pandas Data Structures - Hands-on
File Name: prog.py
import pandas as pd
import numpy as np
heights_A = pd.Series([176.2,158.4,167.6,156.2,161.4])
heights_A.index = ['s1','s2','s3','s4','s5']
print(heights_A.shape)
# TASK 2
weights_A = pd.Series([85.1,90.2,76.8,80.4,78.9])
weights_A.index = ['s1','s2','s3','s4','s5']
print(weights_A.dtype)
#TASK 3
df_A = pd.DataFrame()
df_A['Student_height'] = heights_A
df_A['Student_weight'] = weights_A
print(df_A.shape)
#TASK 4
my_mean = 170.0
my_std = 25.0
np.random.seed(100)
heights_B = pd.Series(np.random.normal(loc = my_mean, scale = my_std, size = 5))
heights_B.index = ['s1','s2','s3','s4','s5']
my_mean1 = 75.0
my_std1 = 12.0
weights_B = pd.Series(np.random.normal(loc = my_mean1,scale = my_std1,size = 5))
weights_B.index = ['s1','s2','s3','s4','s5']
print(heights_B.mean())
#TASK 5
df_B = pd.DataFrame()
df_B['Student_height'] = heights_B
df_B['Student_weight'] = weights_B
print(df_B.columns)
2.Welcome to Python Pandas | 3 | Working with CSV files(90 min)
Working with CSVs
File Name: prog.py
#Write your code here
import pandas as pd
import numpy as np
heights_A = pd.Series([176.2,158.4,167.6,156.2,161.4])
heights_A.index = ['s1','s2','s3','s4','s5']
weights_A = pd.Series([85.1,90.2,76.8,80.4,78.9])
weights_A.index = ['s1','s2','s3','s4','s5']
df_A = pd.DataFrame()
df_A['Student_height'] = heights_A
df_A['Student_weight'] = weights_A
df_A.to_csv('classA.csv')
# TASK 2
df_A2 = pd.read_csv('classA.csv')
print(df_A2)
#TASK 3
df_A3 = pd.read_csv('classA.csv',index_col = 0)
print(df_A3)
#TASK 4
my_mean = 170.0
my_std = 25.0
np.random.seed(100)
heights_B = pd.Series(np.random.normal(loc = my_mean, scale = my_std, size = 5))
heights_B.index = ['s1','s2','s3','s4','s5']
my_mean1 = 75.0
my_std1 = 12.0
np.random.seed(100)
weights_B = pd.Series(np.random.normal(loc = my_mean1,scale = my_std1,size = 5))
weights_B.index = ['s1','s2','s3','s4','s5']
df_B = pd.DataFrame()
df_B['Student_height'] = heights_B
df_B['Student_weight'] = weights_B
df_B.to_csv('classB.csv',index = False)
print('classB.csv')
#TASK 5
df_B2 = pd.read_csv('classB.csv')
print(df_B2)
#TASK 6
df_B3 = pd.read_csv('classB.csv',header = None)
print(df_B3)
#TASK 7
df_B4 = pd.read_csv('classB.csv',header = None, skiprows = 2)
print(df_B4)
3.Welcome to Python Pandas | 4 | Indexing Dataframes(75 Min)
Hands-on with Indexes
File Name: prog.py
#Write your code here
import pandas as pd
import numpy as np
#TASK- 1
DatetimeIndex = pd.date_range(start = '09/01/2017',end='09/15/2017')
print(DatetimeIndex[2])
#TASK - 2
datelist = ['14-Sep-2017','09-Sep-2017']
date_to_be_searched = pd.to_datetime(datelist)
print(date_to_be_searched)
#TASK - 3
print(date_to_be_searched.isin(datelist))
#TASK - 4
arraylist = [['classA']*5 + ['classB']*5,['s1','s2','s3','s4','s5']* 2]
mi_index = pd.MultiIndex.from_product(arraylist,names=['First Level','Second Level'])
print(mi_index.levels)
4.Welcome to Python Pandas | 5 | Data Cleaning
Data Cleaning - Handson
File Name: prog.py
#Write your code here
import pandas as pd
import numpy as np
height_A = pd.Series([176.2,158.4,167.6,156.2,161.4])
height_A.index = ['s1','s2','s3','s4','s5']
weight_A = pd.Series([85.1,90.2,76.8,80.4,78.9])
weight_A.index = ['s1','s2','s3','s4','s5']
df_A = pd.DataFrame()
df_A['Student_height'] = height_A
df_A['Student_weight'] = weight_A
df_A.loc['s3'] = np.nan
df_A.loc['s5'][1] = np.nan
df_A2 = df_A.dropna(how = 'any')
print(df_A2)
5.Welcome to Python Pandas | 6 | Data Aggregation(75 Min)
Data Aggregation - Handson
File Name: prog.py
#Write your code here
import pandas as pd
import numpy as np
heights_A = pd.Series([176.2,158.4,167.6,156.2,161.4])
heights_A.index = ['s1','s2','s3','s4','s5']
weights_A = pd.Series([85.1,90.2,76.8,80.4,78.9])
weights_A.index = ['s1','s2','s3','s4','s5']
df_A = pd.DataFrame()
df_A['Student_height'] = heights_A
df_A['Student_weight'] = weights_A
df_A_filter1 = df_A[(df_A.Student_weight < 80.0) & (df_A.Student_height > 160.0)]
print(df_A_filter1)
#TASK - 2
df_A_filter2 = df_A[df_A.index.isin(['s5'])]
print(df_A_filter2)
#TASK - 3
df_A['Gender'] = ['M','F','M','M','F']
df_groups = df_A.groupby('Gender')
print(df_groups.mean())
6.Welcome to Python Pandas | 7 | Data Merging 1(75 Min)
Data Merge - Hands-on 1
File Name: prog.py
import pandas as pd
import numpy as np
height_A = pd.Series([176.2,158.4,167.6,156.2,161.4])
height_A.index = ['s1','s2','s3','s4','s5']
weights_A = pd.Series([85.1,90.2,76.8,80.4,78.9])
weights_A.index = ['s1','s2','s3','s4','s5']
df_A = pd.DataFrame()
df_A['Student_height'] = height_A
df_A['Student_weight'] = weights_A
df_A['Gender'] = ['M','F','M','M','F']
s = pd.Series([165.4,82.7,'F'],index = ['Student_height','Student_weight','Gender'],name='s6')
df_AA = df_A.append(s)
print(df_AA)
#TASK - 2
my_mean = 170.0
my_std = 25.0
np.random.seed(100)
heights_B = pd.Series(np.random.normal(loc = my_mean,scale=my_std,size = 5))
heights_B.index = ['s1','s2','s3','s4','s5']
my_mean1 = 75.0
my_std1 = 12.0
np.random.seed(100)
weights_B = pd.Series(np.random.normal(loc = my_mean1,scale=my_std1,size = 5))
weights_B.index = ['s1','s2','s3','s4','s5']
df_B = pd.DataFrame()
df_B['Student_height'] = heights_B
df_B['Student_weight'] = weights_B
df_B.index=['s7','s8','s9','s10','s11']
df_B['Gender'] = ['F','M','F','F','M']
df = pd.concat([df_AA,df_B])
print(df)
7.Welcome to Python Pandas | 8 | Data Merging 2(75 Min)
Data Merge - Hands-on 2
File Name: prog.py
#Write your code here
import pandas as pd
import numpy as np
nameid = pd.Series(range(101,111))
name = pd.Series(['person' + str(i) for i in range(1,11)])
master = pd.DataFrame()
master['nameid'] = nameid
master['name'] = name
transaction = pd.DataFrame({'nameid':[108,108,108,103],'product':['iPhone','Nokia','Micromax','Vivo']})
mdf = pd.merge(master,transaction,on='nameid')
print(mdf)
8.Welcome to Python Pandas | 2 | Accessing Pandas Data Structures(90 Min)
Access Elements in Data Structures
File Name: prog.py
#Write your code here
import pandas as pd
import numpy as np
heights_A = pd.Series([176.2,158.4,167.6,156.2,161.4])
heights_A.index = ['s1','s2','s3','s4','s5']
print(heights_A[1])
# TASK 2
print(heights_A[1:4])
# TASK 3
weights_A = pd.Series([85.1,90.2,76.8,80.4,78.9])
weights_A.index = ['s1','s2','s3','s4','s5']
df_A = pd.DataFrame()
df_A['Student_height'] = heights_A
df_A['Student_weight'] = weights_A
height = df_A['Student_height']
print(type(height))
# TASK 4
df_s1s2 = df_A[df_A.index.isin(['s1','s2'])]
print(df_s1s2)
# TASK 5
df_s2s5s1 = df_A[df_A.index.isin(['s1','s2','s5'])]
df_s2s5s1 = df_s2s5s1.reindex(['s2','s5','s1'])
print(df_s2s5s1)
#TASK 6
df_s1s4 = df_A[df_A.index.isin(['s1','s4'])]
print(df_s1s4)
1 comment