Unstructured Data Classification Hands-On Solution | TCS Fresco Play
Disclaimer: The primary purpose of providing this solution is to assist and support anyone who are unable to complete these courses due to a technical issue or a lack of expertise. This website's information or data are solely for the purpose of knowledge and education.
Make an effort to understand these solutions and apply them to your Hands-On difficulties. (It is not advisable that copy and paste these solutions)
The course id of Unstructured-Classification is 55943
Install --> Test --> Run --> Open Preview
Copy url and paste in next tab
click on unstructured_test.ipynb
Step1:-
import pandas as pd
import numpy as np
import csv
Step2:-
#Data Loading
imdb=pd.read_csv("imdb.csv")
imdb.columns = ["index","text","label"]
print(imdb.head(5))
Step3:-
data_size = imdb.shape
print(data_size)
imdb_col_names = list(imdb.columns)
print(imdb_col_names)
print(imdb.groupby('label').describe())
print(imdb.head(3))
Step4:-
imdb_target=imdb['label']
print(imdb_target)
Step5:-
from nltk.tokenize import word_tokenize
import nltk
nltk.download('all')
def split_tokens(text):
text = text.lower()
word_tokens = word_tokenize(text)
return word_tokens
imdb['tokenized_message'] = imdb.apply(lambda row: split_tokens(row['text']), axis = 1)
Step 6:-
from nltk.stem.wordnet import WordNetLemmatizer
def split_into_lemmas(text):
lemma = []
lemmatizer = WordNetLemmatizer()
for word in text:
a=lemmatizer.lemmatize(word)
lemma.append(a)
return lemma
imdb['lemmatized_message'] = imdb.apply(lambda row: split_into_lemmas(row['tokenized_message']),axis=1)
print('Tokenized message:', imdb['tokenized_message'][55])
print('Lemmatized message:', imdb['lemmatized_message'][55])
Step 7:-
from nltk.corpus import stopwords
def stopword_removal(text):
stop_words = set(stopwords.words('english'))
filtered_sentence = []
filtered_sentence = ' '.join([word for word in text if word not in stop_words])
return filtered_sentence
imdb['preprocessed_message'] = imdb.apply(lambda row: stopword_removal(row['lemmatized_message']),axis = 1)
print('Preprocessed message:',imdb['preprocessed_message'])
Training_data=pd.Series(list(imdb['preprocessed_message']))
Training_label=pd.Series(list(imdb['label']))
Step 8:-
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
tf_vectorizer = CountVectorizer(ngram_range = (1,2), min_df = (1/len(Training_label)),max_df = 0.7)
Total_Dictionary_TDM = tf_vectorizer.fit(Training_data)
message_data_TDM = Total_Dictionary_TDM.transform(Training_data)
Step 9:-
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(ngram_range = (1,2), min_df = (1/len(Training_label)),max_df = 0.7)
Total_Dictionary_TFIDF = tfidf_vectorizer.fit(Training_data)
message_data_TFIDF = Total_Dictionary_TFIDF.transform(Training_data)
Step 10:-
from sklearn.model_selection import train_test_split#Splitting the data for training and testing
train_data,test_data, train_label, test_label = train_test_split(message_data_TDM,Training_label,test_size = 0.1)
Step 11:-
seed=9
from sklearn.svm import SVC
train_data_shape = train_data.shape
test_data_shape = test_data.shape
print("The shape of train data", train_data_shape)
print("The shape of test data", test_data_shape )
classifier = SVC(kernel="linear",C=0.025,random_state=seed)
classifier = classifier.fit(train_data,train_label)
#target =
score = classifier.fit(train_data,train_label)
print('SVM Classifier : ',score)
with open('output.txt', 'w') as file:
file.write(str((imdb['tokenized_message'][55],imdb['lemmatized_message'][55])))
Step 12:-
from sklearn.linear_model import SGDClassifier
train_data,test_data, train_label, test_label = train_test_split( message_data_TDM, Training_label, test_size = 0.2)
train_data_shape = train_data.shape
test_data_shape = test_data.shape
print("The shape of train data", train_data_shape )
print("The shape of test data", test_data_shape )
classifier = SGDClassifier( loss='modified_huber',shuffle = True, random_state = seed )
classifier = classifier.fit(train_data,train_label)
#target=
score = classifier.score(test_data,test_label)
print('SGD classifier : ',score)
with open('output1.txt', 'w') as file:
file.write(str((imdb['preprocessed_message'][55])))
Post a Comment