# Regression Analysis Hands-on Solution | TCS Fresco Play

### 1. OLS (Ordinary Least Squares that algorithm used here)

(Regression Analysis - Single Linear Regression)

Note:- Use Shift + Enter command for execution.

cell 1:- (Just Shift + Enter, No need to write below code)

from sklearn.datasets import load_boston

import pandas as pd

dataset = pd.DataFrame(data=boston.data, columns=boston.feature_names)

dataset['target'] = boston.target

Cell 2:-

###Start code here

X = dataset['RM']

Y = dataset['target']

###End code(approx 2 lines)

(shift + enter)

Cell 3:-

###Start code here

import statsmodels.api as sm

###End code(approx 1 line)

(shift + enter)

### Regression Analysis MCQ solution

Cell 4:-

###Start code here

statsModel = sm.OLS(Y,X)

fittedModel = statsModel.fit()

###End code(approx 2 lines)

(Shift + Enter)

Cell 5:-

###Start code here

print(fittedModel.summary())

###End code(approx 1 line)

(Shift + Enter)

Cell 6:-

###Start code here

r_squared = 0.90

###End code(approx 1 line)

(Shift + Enter)

Cell 7:-  (Just Shift + Enter no need to write below code)

import hashlib

import pickle

def gethex(ovalue):

hexresult=hashlib.md5(str(ovalue).encode())

return hexresult.hexdigest()

def pickle_ans1(value):

hexresult=gethex(value)

with open('ans/output1.pkl', 'wb') as file:

hexresult=gethex(value)

print(hexresult)

pickle.dump(hexresult,file)

pickle_ans1(r_squared)

### 2. MLR (Multi Linear Regression Analysis)

For the execution of cell run shift + enter

cell 1:-

from sklearn.datasets import load_boston

import pandas as pd

dataset = pd.DataFrame(data=boston.data, columns=boston.feature_names)

dataset['target'] = boston.target

cell 2:-

X = dataset.drop('target',axis=1)

Y = dataset['target']

cell 3:-

print(X.corr())

corr_value = 0.29

cell 4:-

import statsmodels.api as sm

fitted_model = sm.OLS(Y,X).fit()

print(fitted_model.summary())

cell 5:-

r_squared = 0.96

cell 6:-

import hashlib

import pickle

def gethex(ovalue):

hexresult=hashlib.md5(str(ovalue).encode())

return hexresult.hexdigest()

def pickle_ans1(value):

hexresult=gethex(value)

with open('ans/output1.pkl', 'wb') as file:

hexresult=gethex(value)

print(hexresult)

pickle.dump(hexresult,file)

def pickle_ans2(value):

hexresult=gethex(value)

with open('ans/output2.pkl', 'wb') as file:

hexresult=gethex(value)

print(hexresult)

pickle.dump(hexresult,file)

pickle_ans1(corr_value)

pickle_ans2(r_squared)

Alert:- After completion of these two don't close the Jupytor notebook pages because the next quiz question answers will be on the Jupytor page. (Just submit the hackerrank page only).

### Regression Analysis MCQ solution

If you have any queries, please feel free to ask on the comment section.

If you want MCQs and Hands-On solutions for any courses, Please feel free to ask on the comment section too.